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Goal of this series of talks

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics
2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: limits

3 Representation theory: Categories of modules, semi-simplicity,
isomorphism classes i.e. the framework of Kronecker coefficients.

4 MRS factorisation: A local system of coordinates for Hausdorff
groups.
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CCRT[10]: Lie-theoretic aspects of Noncommutative
Differential Equations.

1 We start from the picture of last friday (with two paths drawn)

Lie Group G

L(G ) (Lie algebra)

S(z)

T (z)
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2 When one sees the following

Proposition

i) Series Sz0

Pic is the unique solution of{
d(S) = M.S with M ∈ H(Ω)+〈〈X 〉〉 (HNCDE )

S(z0) = 1H(Ω)〈〈X〉〉
(1)

ii) The set of solutions of d(S) = M.S , (HNCDE ) is Sz0

Pic .C〈〈X 〉〉.

ii) The complete set of solutions of (HNCDE + 〈S |1〉 = 1) is then
Sz0

Pic .(1 + C+〈〈X 〉〉) (the NC Galois group is then in red).

3 Here Picard’s process is defined by

The series Sz0
Pic (z0 ∈ Ω) can be computed by Picard’s process

S0 = 1X∗ ; Sn+1 = 1X∗ +

∫ z

z0

M.Sn (2)

and its limit is Sz0
Pic := limn→∞ Sn (=

∑
w∈X∗ αz

z0
(w) w).

4 / 29



4 and the following

Theorem (Analyse et Géometrie, Cargèse, IESC, 21-24 Nov. 2017)

Let

(TSM) dS = M1S + SM2 . (3)

with S ∈ H(Ω)〈〈X 〉〉, Mi ∈ H(Ω)+〈〈X 〉〉

(i) Solutions of (TSM) form a C-vector space.

(ii) Solutions of (TSM) have their constant term (as coefficient of 1X∗) which
are constant functions (on Ω); there exists solutions with constant
coefficient 1Ω (hence invertible).

(iii) If two solutions coincide at one point z0 ∈ Ω (or asymptotically), they
coincide everywhere.

5 ... one cannot prevent thinking about Lie theory.
Let us take a look there.
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G L(G ) Cat Eqns Char=1

U(n) dX + dX ∗ = 0 R X (X ∗) = I -

SU(n) dX + dX ∗ = 0 R X (X ∗) = I det(X )

tr(X ) = 0

GL(n, k) kn×n R,C det(X ) 6= 0 -

SL(n, k) tr(X ) = 0 R,C det(X ) = 1 or det(X )

Mag(k,X ) k+〈〈X 〉〉 Q ⊂ k ε(S) = 1 -

Haus(k,X ) Ξinf (k,X ) Q ⊂ k ∆x (S) = S ⊗ S 〈S |1X∗〉 = 1
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6 We now take advantage of some simple facts about Lie algebras
1 There is a local Log-Exp mutually inverse correspondence (in the

formal - unipotent - world it will global)
2 If a C 1 path t 7→ γ(t) is drawn on G ,

i) for each t0, γ′(t0) ∈ Tγ(t0) and then
ii) m(t) = γ′(t)(γ(t)−1) is C 0 and drawn on L(G ).

3 Then γ is a solution of the system{
y ′ = m(t).y

y(t0) = y0
(4)

4 Conversely “if a C 1 path γ is a solution of the system (4) (with m(t)
C 0 drawn on L(G ) and y0 ∈ G ), then γ is drawn on G ” through
Poincaré-Hausdorff formula.

5 The proof of this converse holds for (closed) subgroups of invertible in
Banach algebras and

6 One-parameter groups (OPG) are obtained with
m(t) = c ∈ L(G ), t0 = 0, y0 = 1 (precisely this one is exp(c .t) i.e. the
OPG with infinitesimal generator c ).

7 We will return to OPG later. For now, let us focus on general paths in
the Noncommutative realm.
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Every path drawn on the group is a solution of

y ′(t) = m(t)y(t)

Lie Group G

L(G ) (Lie algebra)

y(t)

y(t)

c

y ′(t)
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Examples (Lie-group side)

1 The Lie algebra of SU(n) (L(SU(n)) = su(n)) consists of n × n skew
hermitian traceless complex matrices (see table in slide 6). For example

su(2) =

{(
i a −z
z −i a

)
: a ∈ R, z ∈ C

}
(5)

2 Therefore a basis of its Lie algebra is

u1 =

(
0 i
i 0

)
, u2 =

(
0 −1
1 0

)
, u3 =

(
i 0
0 −i

)
(6)

and, for C 1 functions (i.e. in some C 1(]a, b[,R)) fi , i = 1..3 the path
γ(t) = ef1(t).u1 ef2(t).u2 ef3(t).u3 is drawn on SU(2).

3 Then, using conjugations, one can calculate explicitely the left multiplier
m(t) of γ(t) i.e. m(t) such that γ′(t) = m(t)γ(t) (left to the reader so far).
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Formal side

7 One can use Picard’s process to construct solutions of NCDE (3) in slide 5
(and this will be generalized to other monoids). Doing this, one obtains
Cω-paths drawn on the Magnus group

Mag(C,X ) = 1 + C+〈〈X 〉〉

8 It suffices to modify this process by

S0 = 1X∗ ; Sn+1 = 1X∗ +

∫ z

z0

M1.Sn + Sn.M2 (7)

9 and the limit S (which is easily proved to exist as 〈Mi |1X∗〉 = 0) is the
unique solution of {

d(S) = M1.S + S .M2

S(z0) = 1H(Ω)〈〈X〉〉
(8)

10 Remark that S is solution of an equation S ′ = MS as it is drawn on
Mag(C,X ) = 1 + C+〈〈X 〉〉.
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An application to renormalization

11 One can construct, using improper integrals the solution G0 of the
following system (with asymptotic initial condition){

d(S) = ( x0
z + x1

1−z ).S

limz→0 S .e−x0log(z) = 1H(Ω)〈〈X 〉〉
(9)

12 It then interesting to study T = G0.e
−x0log(z) which satisfies the two

sided evolution equation (TSM)

d(T ) = (
x0

z
+

x1

1− z
).T + T .(−x0

z
)

13 Next, one proves that T is group-like, factorizes through (MRS) and
that limz→0 T (z) = 1.

14 We now embark to exponentials (OPG), MRS and Wei-Norman
theorem.
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Exponentials (OPG)

15 Here a one-parameter group (OPG) with infinitesimal generator (i.e.
tangent vector at the origin). These OPG are also geodesics for every
left-invariant Riemanian structure.

Lie Group G

L(G ) (Lie algebra)

γ(t) = ec.t

c
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Product of exponentials: Wei-Norman theorem

16 We have the following theorem (true for all k-Lie group).
See also [3] ch III §8 Ex.4 and Mathoverflow question “Local
coordinates on infinite dimensional Lie groups and factorization of
Riemann polylogarithms”.
https://mathoverflow.net/questions/203771

Theorem (Wei-Norman theorem)

Let G be a k-Lie group (of finite dimension) ( k = R or k = C) and let g
be its k-Lie algebra. Let B = {bi}1≤i≤n be a (linear) basis of it. Then,
there is a neighbourhood W of 1G (within G ) and n analytic functions
(local coordinates)

W → k, (ti )1≤i≤n

such that, for all g ∈W

g =
→∏

1≤i≤n

eti (g)bi = et1(g)b1et2(g)b2 . . . etn(g)bn .
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Towards the formal realm: classical construction/1

All definitions of algebra (resp. large algebra) of a monoid, Lie algebra,
enveloping algebra, used here are standard and can be taken e.g. from
[1, 3] (I can go into detail interactively on request by email).
Let X be a set (of variables, or indeterminates, or an alphabet), k a
Q-algebra and let

k〈X 〉, k〈〈X 〉〉,Lk〈X 〉,Lk〈〈X 〉〉

be respectively the free algebra (i.e. the algebra of noncommutative
polynomials or the algebra of the free monoid X ∗), the algebra of
noncommutative formal power series (i.e. the large algebra of the free
monoid X ∗) see [1], the free Lie algebra and the Lie algebra of Lie series
[3]. We will use the natural pairing between k〈〈X 〉〉 = kX∗

and
k〈X 〉 = k(X∗) given by the following sum on the words

〈S |P〉 =
∑

w

coeff (S ,w)coeff (P,w)
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Towards the formal realm: classical construction/2

It is well known that
k〈X 〉 = U(Lk〈X 〉) .

As such, it admits a structure of Hopf algebra

(k〈X 〉, conc , 1X∗ ,∆shuffle , ε,S)

conc being the concatenation, ∆shuffle being the dual law of the shuffle
product, ε(P) = 〈P|1X∗〉 (constant term) and S(a) = −a for all a ∈ X ;
Every basis (B = (bi )i∈I ; I totally ordered) of Lk〈X 〉 (which is free, for all
rings k) can be extended to a Poincaré-Birkhoff-Witt basis of k〈X 〉,
parametrized by the multiindices of N(I ). The multi-index product is
defined as follows. For every α ∈ N(I ), we set

Bα = bα1
i1

bα2
i2
· · · bαm

im

with supp(α) = {i1 < i2 < · · · im}.
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Towards the formal realm: classical construction/3

Now, if B is multi-homogeneous (w.r.t. the N(X )-grading), so is
(Bα)α∈N(I ) and there is a unique family of polynomials Bα such that

〈Bα|Bβ〉 = δα,β (Dual− Basis)

Now within the algebra of double series (whose support is kX∗⊗X∗

endowed with the law shuffle⊗̂conc , M.P. Schützenberger (see [3,4])
gave the beautiful formula

∑
w∈X∗

w⊗̂w =
→∏
i∈I

eBei
⊗̂bi (10)

where ei are the irreducibles of the monoid N(I ) defined by ei (j) = δi ,j (in
particular Bei = bi ). This can be used to provide a system of local
coordinates on the Hausdorff group (this is the closed subgroup of the
Magnus group of primitive series).
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Towards the formal realm: classical construction/4

Hausk (X ) = {eL}L∈Lk 〈〈X 〉〉 = {S ∈ k〈〈X 〉〉|ε(S) = 1, ∆shuffle(S) = S⊗̂S}

because, in this case, S ⊗ Id is compatible with the law of the double
algebra and then, applying this operator to (10), we get

S = (S⊗̂Id)(
∑

w∈X∗

w⊗̂w) =
→∏
i∈I

e〈S|Bei
〉 bi

which is a system of local coordinates for the group Hausk (X ).
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Towards the formal realm: classical construction/4

Application to Riemann zeta functions. –
When one multiplies several zeta values

ζ(s) =
∑
n≥1

1

ns

multi-zeta values do appear, they are defined by

ζ(s1, s2, · · · sk ) =
∑

n1>n2>···nk≥1

1

ns1
1 ns2

2 · · · n
sk
k

. (11)
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Towards the not-so-formal realm

When s1, s2, · · · sk are integers, the link with the shuffle product is that the
quantity (11) converges when s1 > 1 and, coding (s1, s2, · · · sk ) by the
word w = (x s1−1

0 x1x s1−1
0 x1 · · · x sk−1

0 x1) (here X = {x0, x1})
and recoding (11) by ζ̃(w) = ζ(s1, s2, · · · sk ) one can prove that ζ̃ can be
extended uniquely as a shuffle character of Q〈X 〉 satisfying
ζ̃(x0) = ζ̃(x1) = 0 so that, applying (11) we get

ζ̃ = (ζ̃⊗̂Id)(
∑

w∈X∗

w⊗̂w) =
→∏
i∈I

e ζ̃(Bei
) bi (12)

for every multihomogeneous basis B of the free Lie algebra LQ〈X 〉.

19 / 29



Towards the formal realm: general construction/1

Coda: Given g a k-Lie algebra (finite or infinite dimensional), which is free as a
k-module (k is, as above, a Q-algebra), given any ordered basis B = (bi )i∈I of g.
As above, for every α ∈ N(I ), we set

Bα = bα1

i1
bα2

i2
· · · bαm

im

with supp(α) = {i1 < i2 < · · · im}. We now consider the space

A = spank{(Bα)|α ∈ N(I )} ⊂ U∗(g) (13)

It is an convolution subalgebra, due to the formula

Bα ∗ Bβ =
(α + β)!

α!.β!
Bα+β (14)
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Towards the formal realm: general construction/2

Every character χ of (A, ∗, ε) can be factored in an MRS way

χ =
→∏
i∈I

eχ(Bei
) bi (15)

for the topology of pointwise convergence on A (k being discrete and the
notation of Bα being those of (Dual− Basis)).

Remark. – This formula holds for every character with values in a
commutative k-algebra (B, ∗B, 1B), in particular with B = A, one has

IdU =
∑
α∈N(I )

Bα ⊗Hom Bα =
→∏
i∈I

eBei
⊗Hom bi (16)

where, for (f , b) ∈ U∗ × U , f ⊗Hom b stands for g ∈ End(U) such that
g(x) = f (x).b.
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Concluding remark and final questions

1 A MRS factorization exists with monoids (called free partially
commutative, see [7])

M(X , θ) = 〈X ; (xy = yx)(x ,y)∈θ〉Mon (17)

where θ ⊂ X × X is a reflexive undirected graph.This is proved using
k[M(X , θ)] = U(Liek(X , θ)).

2 A unipotent Magnus group with a nice Log-Exp correspondence can
be defined for every locally finite monoid. Is there a general MRS
factorization ?

3 In the sound cases, what is the combinatorics of different orders ?
(Not increasing or decreasing Lyndon words.) Are they useful ?

Thank you for your attention.
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Links

1 Categorical framework(s)

https://ncatlab.org/nlab/show/category

https://en.wikipedia.org/wiki/Category_(mathematics)

2 Universal problems

https://ncatlab.org/nlab/show/universal+construction

https://en.wikipedia.org/wiki/Universal_property

3 Paolo Perrone, Notes on Category Theory with examples from basic
mathematics, 181p (2020)
arXiv:1912.10642 [math.CT]

https://en.wikipedia.org/wiki/Abstract_nonsense

4 Heteromorphism

https://ncatlab.org/nlab/show/heteromorphism

5 D. Ellerman, MacLane, Bourbaki, and Adjoints: A Heteromorphic
Retrospective, David EllermanPhilosophy Department, University of
California at Riverside
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Links/2

6 https://en.wikipedia.org/wiki/Category_of_modules

7 https://ncatlab.org/nlab/show/Grothendieck+group

8 Traces and hilbertian operators

https://hal.archives-ouvertes.fr/hal-01015295/document

9 State on a star-algebra

https://ncatlab.org/nlab/show/state+on+a+star-algebra

10 Hilbert module

https://ncatlab.org/nlab/show/Hilbert+module
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